

Winning the tribological contest using a Digital Twin for PVD coated applications Surface Solution for Gears as an example

TRIBOLOGY 2025 – Materials Making the Difference 3rd of June 2025; Rolls-Royce Learning and Development Centre, Derby, UK;

Dr.-Ing. Emanuel Tack, Theresa Huben - Oerlikon Balzers, LI;

Vincent Hoffmann - Tribo Technologies, DE;

Motivation & Vision of the Project

Optimizing Diamond Like Carbon coatings for gears Vision of the Project

Passenger Car

Aerospace

Industry

Increase the efficiency of gearboxes from various industries

Source: Rolls Royce, BMW, Vestas;

Aim, Challenges, Tasks

Optimizing Diamond Like Carbon coatings for gears Aim, Challenges, Tasks

Aim:

Increase the range of electric vehicles economically

Challenges:

- Increase efficiency of the reduction gear
- · Reduce frictional power losses
- Offer high-performance surface solutions for gears
 - · surface pretreatment if needed
 - DLC Coating

Tasks:

- create a Digital Twin of the PVD/PACVD coating plus substrate including:
 - mechanical-technological properties
 - · thermodynamical properties
- Control the substrate temperature during PVD/PACVD coating process

*TEHL: thermal-elastohydrodynamic lubrication

EV Reduction Gears

Optimizing Diamond Like Carbon coatings for gears EV Reduction Gears

Two-stage single-speed transmission - helical spur gear

Source: BMW

Optimizing Diamond Like Carbon coatings for gears EV Reduction Gears

Two-stage single-speed transmission - helical spur gear

Typical gears failures // wear topics

Diamond Like Carbon coatings for gears PVD/PACVD coatings for typical gears failures / wear topics

₩ DÌ'C	Damage mechanism	Example	Typical location (at tooth)	Typical location (at gear)	Mechanism / progress
	Pitting	-	dedendum	specific teeth	contact fatigue
	Micropitting		dedendum	specific, soon all teeth	contact fatigue
	Scuffing	Miles	addendum	specific teeth	non-fatigue
	Adhesive wear		sliding regions	all teeth	mixed friction
	Tooth root fract.		30° root tangent pt.	specific teeth	bending fatigue
	PVD/PACVD coa	atings avoid ty	pical gear failures	→ don`t weaken the	e tooth root!

Different DLC Coatings

Diamond Like Carbon coatings for gears Suitable coatings for gears

a-C (HIPIMS*) **Arc evaporation Sputtering** Benefits of arc Benefits of technology conventional technology ✓ High ionization of the evaporated Smooth coatings (deposition with flux virtually no ✓ Dense coatings droplets) ✓ Good adhesion **BALIQ® CARBOS STAR** S3p® technology Hardness: 30-35 GPa Run-in a-C:H Functional layer CrC Cr/CrN Substrate

œrlikon

Different Levels for Testing the coating

Diamond Like Carbon coatings for gears Testing Specimen

- shadowing effect
 - Real Parts
- High effort to coordinate the tests and to get the real parts

- shadowing effect
- Similar Parts
- High effort to coordinate the tests and to get the parts

- shadowing effect
 - Specific Gear Roughness
- Specific Gear Material

- · Ideal smooth surface
- No shadowing effect
 - Standard material

Digital Twin - SRV Tests

SRV test

- Ball indenter
- Oscillating motion with high frequency
- Normal load applied to ball
- System:
 - Ball
 - Lubricant
 - Coated specimen
- > Goal: test of tribological system regarding wear resistance

SRV test and simulation configurations

- I. SRV Test "Boundary Friction"
- High load
- Low frequency
- High temperature

- II. SRV Test "Mixed Friction"
- Small load
- High frequency
- Low temperature

SRV test

Model Setup

Geometry and Operating Conditions

- SRV test
- Lubrication via oil bath
- Strain focus test oriented on normed SRV test
- Mixed-friction test designed to generate hydrodynamic effect at the ball

Data	Boundary friction	Mixed friction	Unit
Ball diameter	10	10	mm
Stroke	4.6	4.6	mm
Frequency	20	30	Hz
Load	200	5	N
Temperature	150	35	°C

Model Setup

Surface Roughness

- Roughness significantly influences gap flow and contact
- Roughness consideration based on measured surfaces
- Contact of surface roughness modeled based on precalculated integral solid contact pressure curve
- Influence of surface roughness on gap flow modeled based on flow factors

Surface Data	Sign	Surface	Unit
Root mean square average roughness	RMS	0.170	μm
Average roughness	Ra	0.133	μm
Maximum peak to valley roughness	R_z	1.597	μm

Model Setup

Lubricant Properties

- Properties of lubricant define the hydrodynamic pressure build up and friction significantly
 - Dyn. viscosity
 - Density
 - Thermal conductivity
 - Spec. heat capacity
- change with temperature, pressure and shear rate dependency
- consideration of lubricant properties in the simulation

Model Setup

Modeling the Layer System

- Layer structure significantly influences
 - Strength and hardness
 - Wear
 - Friction
 - Thermal heating
- Modeling of substrate and coating with 6 sublayers with different mechanical and thermo-physical properties
 - E-modulus
 - Poisson ratio
 - Thermal conductivity
 - Spec. heat capacity

I) SRV Test "Boundary Friction"

Data	Boundary Friction	Mixed Friction	Unit
Ball diameter	10	10	mm
Stroke	4.6	4.6	mm
Frequency 20		30	Hz
Load	200	5	Ν
Temperature	150	35	°C

I) SRV Test "Boundary Friction"

- Low hydrodynamic pressure build-up
- Contact is dominated by solid contact of rough surfaces

Data	Boundary Friction	Mixed Friction	Unit
Ball diameter	10	10	mm
Stroke	4.6	4.6	mm
Frequency	20	30	Hz
Load	200	5	N
Temperature	150	35	°C

I) SRV Test "Boundary Friction"

I) SRV Test "Boundary Friction"

Analysed Coating System

Layer	Yield strength [MPa]	Simulated max. Stress [MPa]	
a-C:H	> 20000	1700	
Cr containing interlayers	8000-17000	1000- 1800	z [mm
Substrate	~ 6000	2500	

- Due to size of indenter the stress maximum is located in substrate
- Stress is factor 8-10 below strength of material

Data	Boundary Friction	Mixed Friction	Unit
Ball diameter	10	10	mm
Stroke	4.6	4.6	mm
Frequency	20	30	Hz
Load	200	5	N
Temperature	150	35	°C

- Increased hydrodynamic pressure build-up
- Hydrodynamic pressure increases with increasing sliding speed

Data	Boundary Friction	Mixed Friction	Unit
Ball diameter	10	10	mm
Stroke	4.6	4.6	mm
Frequency	20	30	Hz
Load	200	5	N
Temperature	150	35	°C

II) SRV Test "Mixed Friction"

Analysed Coating System

Layer	Yield strength [MPa]	Simulated max. Stress [MPa]
a-C:H	> 20000	220
Cr containing interlayers	8000-17000	140-240
Substrate	~ 6000	250

Stress is factor 60-90 below strength of material

Decreased wear generation in center of wear mark

Digital Twin - helical spur gear

Optimizing Diamond Like Carbon coatings for gears Digital Twin - helical spur gear

Contact line from one edge diagonale to the other edge

Optimizing Diamond Like Carbon coatings for gears Digital Twin - helical spur gear

b/2

Width

Contact line from one edge diagonale to the other edge

Optimizing Diamond Like Carbon coatings for gears Digital Twin - helical spur gear

Challenge for DLC coatings at high load and low speed

Optimizing Diamond Like Carbon coatings for gears Digital Twin - helical spur gear - max torque, low speed

Stress inside the coating reaches maximum at the end of each tooth contact (line of action)

Optimizing Diamond Like Carbon coatings for gears Digital Twin - helical spur gear - max torque, low speed

Comparison simulation with reality → it matches! This selected coating is NOT suitable for the Tribosystem

Digital Twin - Scratchtests

Optimizing Diamond Like Carbon coatings for gears Simulation of Scratchtests

Load 1-10N; track 0-2000 μm; R_tip = 50 μm; + black cross means: von Mises stress > yield strength

Diamond Like Carbon coatings for gears SRV® Tests on flat samples from Dummy Wheel

LUBRICATED & HEATED SRV5 Tribometer Test in Boundary Lubrication Regime

Oil (fully additivated)	Value	Unit
Viscosity @ 40°C	< 25	mPas
Viscosity @ 100°C	< 5	mPas

Tests based on ISO 19291

Roughness	Rz	Unit
Ball 100Cr6	G10	μm
Special flat sample*	1	μm

Only 5x drops of low viscosity gear oil to be in the lubrication regime of boundary lubrication

^{*}Material: case hardened 16MnCr5, Roughness Rz 1 µm, Hardness ~58-59 HRC

Diamond Like Carbon coatings for gears SRV-Tests on flat samples from Dummy Wheel @Pitch

! No galling ! with GEAR OPTIMIZED BALINIT® C

Diamond Like Carbon coatings for gears GEAR OPTIMIZED BALINIT® C on gear wheel

Dedendum

GEAR OPTIMIZED BALINIT® C

Pitch

GEAR OPTIMIZED BALINIT® C

Addendum

GEAR OPTIMIZED BALINIT® C

! No galling ! with GEAR OPTIMIZED BALINIT® C

Diamond Like Carbon coatings for gears GEAR OPTIMIZED BALIQ® CARBOS STAR on gear wheel

Dedendum

GEAR OPTIMIZED BALIQ®

CARBOS STAR

Pitch

GEAR OPTIMIZED BALIQ®

CARBOS STAR

Addendum

GEAR OPTIMIZED BALIQ®

CARBOS STAR

! No galling & almost no wear ! with GEAR OPTIMIZED BALIQ® CARBOS STAR

Diamond Like Carbon coatings for gears SRV-Tests on flat samples from Dummy Wheel @Pitch

With GEAR OPTIMIZED BALINIT® C and BALIQ® CARBOS STAR the wear depth is still inside the coating

Know-How DLC coatings for gears

Diamond Like Carbon coatings for gears Valuable Know-How

Coating Process Temperature Diameter Direct: Substrate **Hardness** Indirect: hard soft **Durability** Direct: Intrinsic **Stress** Indirect: **Durability**

Know-How

Diamond Like Carbon coatings for gears Summary & Outlook

Summary:

- Digital Twin of substrate and coating helps to explain the wear mechanism
 - typical continuous wear (von Mises stress < yield strength)
 - excessive wear (von Mises stress > yield strength)
- TEHL Simulations help to explain the wear behaviour of coated gears

STANDARD PERFORMANCE:

- BALINIT® C (WC/C) < 165°C Substrate Temperature
 - Rz < 2 μ m, (~Ra < 0.3 μ m) necessary, e.g. honing

HIGH PERFORMANCE:

- BALIQ® CARBOS STAR (a-C) < 165°C Substrate Temperature</p>
 - Rz < 1 μm, (~Ra < 0.2 μm) necessary, e.g. polish honing

Outlook 2025:

- BALIQ® CARBOS STAR (a-C) gear performance and efficiency tests together with different customers
- Testing different coating combinations (coating #1 @pinion, coating #2 @wheel)

œrlikon

THANK YOU.

Contact us

Emanuel Tack

Tribology Expert

emanuel.tack@oerlikon.com

Toby Middlemiss

Country President UK

toby.middlemiss@oerlikon.com

Jörg Jorzick

Senior Technical Business Development Manager

joerg.jorzick@oerlikon.com

Jonathan Chard

Product Manager UK

jonathan.chard@oerlikon.com

European Conference on Tribology 2025

Register now:

www.ecotrib25.ch

Administration **TIH** zürich

Co-Chair & Sponsoring

Nicholas Spencer Co-Chair

Rowena Crockett

