Tribology in Joint Replacement

Dr Mazen Al Hajjar

Principal Research and Test Engineer Chair of ISO TC150/SC4 Bone and Joint Replacement Visiting Fellow at the University of Leeds

EMMS 2025 Tribology 2025- Materials Making the Difference 03 June 2025

BARENTIAL OF ANTICAL ANTICAL OF ANTICAL OF

Johnson&Johnson MedTech

Tribological systems in medical devices

There many Tribological Systems in Medical Devices e.g.

Joint Replacement

Contact lenses

Skin patches

Cardiovascular devices

Hip replacement component

Demands on Materials

Materials challenges in total joint replacement as an example include:

High cyclic stresses
Patient demand / daily living activities
Increasing incidence of high BMI / obesity
Corrosive environment
Biological responses to micrometre and nano size particles
Bone quality / disease and its continued evolution
Variation in implant positioning / surgeon technique

Materials Approaches to Improve Outcomes

Improve Fixation / Reduce Incidences of Loosening -

- Porous coatings
- Porous monolithic structures / scaffolds
- Calcium phosphate coatings

Reduce Incidences of Infection, Pain and Revision -

- Coatings
- Surgical process CAS, patient specific instruments

Reduce Wear, Debris and Ions -

- Improvements in polyethylene materials
- Coatings and surface treatments
- Alternative / new materials

Common Causes of Failure

Wear

Developments in UHMWPE

J&J MedTech

Ę

1st Generation UHMWPE

Gamma sterilized in air (25- 40 kGy) to increase crosslinking in polymer

Crosslinking reduces adhesive / abrasive wear

Crosslinking

Ē

1st Generation UHMWPE

BUT process in air results in increasing oxidation and increased wear

2nd Generation UHMWPE

- Gamma sterilization in oxygen free environment utilising barrier packaging
- Reducing oxidation issue during processing but still creates free radicals material which can lead to long term oxidation

Ē

3rd Generation UHMWPE

Eliminates free radicals

Prevent oxidation after crosslinking

Decreasing wear with higher γ dose

BUT Lower mechanical properties due to high crosslinking and low % crystallinity

Ē

4th Generation UHMWPE

Stabilization of free radicals without thermal treatment

10

0

Gamma

Barrier*

Marathon Crossfire*

X3*

E-Poly#

Durasul[^]

J&J MedTech

Ę

Reduce Wear, Debris and Ions Developments in Ceramics and Hard Coatings

Potential benefits of ceramics and ceramic coatings:

- Lower adhesive wear of UHMWPE against ceramic
- Hardness
 - Superior surface finish
 - Increased resistance to abrasive wear / scratching
- Reduction / removal of metal ions from wear and / or corrosion products therefore reducing hypersensitivity risk
 - Hypersensitive immune response to Ni is believed to affect as much as 14% of population

Development of Multi-station multi-axis joint simulators

Current Challenges and Opportunities

High demand patients

Adverse conditions and cases

Revision surgery

Effect of Implant positioning

Advance simulations

Etchels et al, 2018

Jahani et al, 2018

Mode 3 wear

Particle embedment on VIVO AMTI simulator

- 2mg of 50/50 weight % mixture of 60 and 80 grit Al₂O₃ media was applied to each of the inner (Figure 2) and outer (Figure 3) polyethylene surfaces.
- 1000N constant axial load and ±30°IE rotation to the intended bearing surface (while keeping the other bearing surface fixed) for 20 cycles at 1Hz.

Figure 2: Particle embedment on the inner surface of the mobile bearing. The axial load went through the pole of the head and mobile bearing.

Figure 3: Particle embedment on the outer surface of the mobile bearing. Acetabular cup positioned at 30° inclination.

Mode 3 wear continued

- The wear of antioxidant polyethylene material (for both sizes) was significantly lower (p=0.001) than the wear of moderately cross-linked polyethylene material
- The third body particles remained embedded for the duration of the wear test.
- Significant scratching was observed on the metal head and acetabular cups for both DM systems.
- There was no sign of cracking, fracture or delamination of either polyethylene materials after six million cycles of testing.
- The serum lubricant turned dark due to release of significant quantities of metal particles from the metal bearing surfaces.

CoCr metal head

CoCr metal liner

CoCr metal liner

Stainless steel metal shell

Wear rate after 6 million cycles of testing. Error bars represent 95% Cl.

Representative images of samples at the end of the test

Impingement scenario in joint replacement

Polyethylene mobile bearings is fixed flat in the fixture

Aged conventional polyethylene

0 MID 0'0000 0'10015 0'1003 0'1003 0'1003 0'1003 0'1003 0'1003 0'1003 0'1003 0'1003

Aged novel antioxidant polyethylene

Figure 2: Damage observed on the rim of the restricted aged mobile bearing after one million cycles of impingement. Ageing was completed as per ASTM F2003-02(2015).

Corrosion considerations

Next steps

Modelling: more predictive;

enhance design;

stratification of design and patients

Helping to achieve net zero carbon

• J&J is committed to reducing carbon footprint,

- Tribology laboratory in Leeds, UK achieving Green Level Certification from My Green Lab.
- The scheme is recognized by the United Nations Race to Zero campaign as a key measure of progress towards a zero-carbon future
- My Green Lab Certification is considered the gold standard for laboratory sustainability best practices around the world.

Thank you for listening and the

opportunity to present to you today

Johnson&Johnson MedTech