

Tribology in Transportation: Lubricants Perspective

Dr Ian Taylor June 2025

Where opportunity creates success

Outline

- Changes in lubricants business over past 20-30 years
- Options for lubricant formulations
- Options for decarbonizing transport
- Trends affecting future lubricants
 - Electrification
 - Sustainability
 - New materials & economic considerations
 - Increasingly diverse range of fuels
 - Sensors/AI/ML
- Conclusions

Changes in Lubricants Business since 1990

- Big shift away from Group I base oils
- Decreases in passenger car engine oil viscosities + wider use of friction modifiers
- Compositional constraints on lubricants (such as sulphur and phosphorus limits on engine oils in vehicles fitted with aftertreatment devices)
- Largest market demand is now in Asia (accounts for about 45% of worldwide demand)
- Overall market size has stayed roughly constant at approximately 37-40 million tonnes (apart from "blips" due to the 2008 financial crisis and the COVID pandemic)
- Currently about half of all lubricants are used in transportation

Changes in Base Oil use

Big shift away from Group I base oils – to Group II, III, IV and V – estimated numbers below

Changes in Passenger Car Viscosity Grades

- Large reductions in passenger car engine oil viscosity, more modest changes for heavy-duty engine oils
 - From 2016, API FA-4 heavy-duty diesel engine oils with HTHS viscosity between 2.9 to 3.2 mPa.s can be specified for use. Standard API CK-4 oils have HTHS viscosity ≥ 3.5 mPa.s.
 - Friction modifiers widely used in today's passenger car engine oils, but are not usually used in heavy-duty diesel engine oils

SAE grade	V _k 40 (cSt)	V _k 100 (cSt)	HTHS (mPa.s)	Approx year
15W-40	114.3	14.9	3.5	1990
5W-30	57.4	9.9	2.9	2000
0W-20	44.4	8.3	2.6	2015
0W-8	26.4	5.5	1.9	Future

Options for Lubricant Formulations

 Many choices for the automotive lubricant formulator – choices will affect the cost of the lubricant and its performance

Base oil & detergents Protect the engine

<u>VMs, PPDs, Anti-foam &</u> <u>Anti-Oxidants</u> Protect the lubricant

Dispersants & Anti-Wear Protect the engine and the lubricant

ZDDP Anti-wear	Phenates Sulphonates Salicylates Detergents	Succinimides Esters Dispersants
Silicone fluid Anti-foam	Group I, II or III PAO Ester Base Oils	PMA Styrene CP VMs
Aminic Phenolic Moly trimer Anti-oxidants	Polymethacrylate Pour Point Depressant	GMO Oleyl amide MoDTC Friction Modifier

Options for Decarbonizing Transport

	Electric	Conventional	Hydrogen	Cycling
Energy to travel 100 km	15-25 kWh	6 litres gasoline ≈ 205 MJ ≈ <mark>57 kWh</mark>	1 kg H_2 ($\approx 50 \text{ kWh}$ to make 1 kg H ₂ by electrolysis)	2.2 kWh (David MacKay book)
CO ₂ Emissions	≈ 4 kg (UK electricity mix)	\approx 14 kg	≈ 9 kg**	\approx 2.1 kg (eating extra food)
Approx cost*	£5.10-£8.50	£8.40	£10-£15 (per kg)	£5 (food)
Refuelling time	20 mins to few hours (depends on charger)	3-5 mins	5 mins	A few hours!
Other emissions	No tailpipe emissions	NO _x & PM (impacts local air quality)	Water	None

* Assumes UK electricity price of 34p per kWh, petrol price of £1.40 per litre & current UK H₂ costs

https://www.forbes.com/sites/rrapier/2020/06/06/estimating-the-carbon-footprint-of-hydrogen-production/

- Electrification most countries that are decarbonizing their electricity grids have concluded that the best way to reduce CO₂ emissions from passenger cars is to move from internal combustion engines to batteries
- Figure below shows estimated CO₂ emissions (kg) for a car driving 100 km. CO₂ emissions for electric vehicles will be at the power plant rather than the tail pipe.

https://www.mdpi.com/2075-4442/9/7/66

- Electrification most countries that are decarbonizing their electricity grids have concluded that the best way to reduce CO₂ emissions from passenger cars is to move from internal combustion engines to batteries
- It will take 10-20 years (at least) to fully electrify the passenger car fleet. At present roughly 43% of new cars are electrified, but only about 20% are fully electric (BEVs) the others are various types of hybrids
- Hybrid cars with both engine and battery may need a different lubricant due to higher fuel dilution and water levels in oil, with lower oil temperatures and many more stop-starts during operation

- Sustainability currently there is great focus on lubricant sustainability at present
- Lubricant product carbon footprint guidelines are available from the API and ATIEL
- However, the lubricant contribution to CO₂ emissions is almost negligible compared to the CO₂ emissions arising from the energy needed to move the car see table below (which assumes cars with annual mileage of 10,000 miles) table below show CO₂ emissions in kg

	CO ₂ emissions (energy)	CO ₂ emissions Engine oil	CO ₂ emissions Transmission oil
Gasoline car	3568	14.2	2.8
BEV	1408	-	2.8

 The easiest way to make lubricants more sustainable is to formulate them from re-refined base oils (made from recycled used oil) and extend the oil drain interval

https://www.jstage.jst.go.jp/article/trol/18/6/18_268/_pdf

- New materials & economic considerations
- Much research ongoing into novel nanoparticle lubricant additives and all sorts of bio-based base oils
- In addition, today's lubricants do not just have to lubricate steel-on-steel, but also steel/DLC, steel/coatings, aluminium etc.

 Novel lubricant additives – it is important to realize that the choice of what additives to use in a lubricant is **NOT** just a technology decision

> **Technology** – what additives can be used to reach required performance specification

Commercial – Price/performance calculation for the various options

Supply Chain – Number of manufacturing plants, financial stability of supplier, additive package options

- Novel lubricant additives choice of what additives to use in a lubricant is NOT just a technology decision
- Using publicly available data, a "ball-park" estimate of the average additive package cost is \$5,700 per tonne, ZDTP is about \$3,300 per tonne and MoDTC is about \$10,000 per tonne
- If we take graphene as a typical potential lubricant nanoparticle additive, this is likely to be around \$50,000 per tonne! It is not surprising that nanoparticle additives are not currently used in high-volume, mainstream, commercial lubricants.
- In addition, novel lubricant additives will not be used if they are not registered with regulatory chemistry authorities.
- Manufacturers of such additives may be better advised to target lower volume, high profit niche areas such as high-performance greases, motorsports applications, space etc.

- Increasingly diverse range of fuels used in future transport
- There will undoubtedly be tribological challenges along the way
- Fuels such as ammonia are being considered for ships. Natural gas is also an option, and is also currently used for heavy-duty trucks

- The impact of sensors, AI and ML on tribology will be potentially massive
- Useful data can already be obtained just by analyzing data from a car's ECU data below taken from datalogger fitted to my personal car in 2016

Vehicle speed versus time

Engine speed versus vehicle speed

Engine speed versus time

- The impact of sensors, AI and ML on tribology will be potentially massive
- For lubricant sensors, the following economics are worth considering
 - Budget for condition monitoring for high Capex equipment (e.g. wind turbine, 400 tonne mining vehicle) – about \$10,000 per year
 - Budget for vehicle condition monitoring for single heavy-duty truck probably only about \$100-\$200 per year – main option here is ECU datalogging
 - Vehicle condition monitoring for passenger cars zero
- Any sensor that is intended to be used for lubricant condition monitoring will need to be CHEAP

Conclusions

- It is anticipated there will be many future challenges for lubricants used in transport
- However, it must be recognized that the lubricants business is used to change
- There is likely to be an increasingly diversified range of fuels used in future vehicles
- The impact of electrification it's pace, and take-up will greatly impact the lubricants business (because of the potential drop in demand for engine lubricants and the impact on the lubricants specification systems)
- Although there is much academic tribology research on bio-based lubricants and novel nanoparticle additives, there are many hurdles for these to overcome before they will become more widely used – most lubricant companies are likely to use re-refined base oils to make their lubricants more sustainable
- There will be many opportunities arising in tribology from the use of smart sensors coupled with appropriate AI and ML algorithms

Many thanks for attending the talk

Any questions?

RITaylor@uclan.ac.uk